
API FOR GRID GENERATION OVER TOPOLOGICAL MODELS

S. Gopalsamy, Douglas H. Ross, Alan M. Shih

Enabling Technology Laboratory, Mechanical Engineering Department
University of Alabama at Birmingham, Birmingham, AL., U.S.A

{sgopals, dhross, ashih}@uab.edu

ABSTRACT

Topological representations are being used to define geometric models suitable for grid generation and grid generation tools are
being developed that work directly on topological entities. While there are standards for topological representation, there is no
standard for Application Programming Interface (API) for grid generation over topological models. This paper describes one
such API. It discusses an API for generating various types of grids - edge grids and structured/ unstructured face and volume
grids - in the context of a topological representation scheme used in the Geometry and Grid Toolkit (GGTK) developed at
University of Alabama at Birmingham (UAB). As an application of the API, this paper proposes an XML schema for specifying
desired grids for a topological model. Using XML as a mode of input, one can then develop a web component for grid generation
from a grid generator that supports the API, which can be used by remote users to obtain required grids.

Keywords: topological representation, grid generation, grid specification, web component for grid generation

1. INTRODUCTION

Geometric modeling and grid generation are required pre-
processing steps for computational simulation of many
engineering processes such as Computational Fluid
Dynamics (CFD), and Computational Structural Mechanics
(CSM). Traditionally, in a typical application, a geometric
model will be obtained using a CAD system and grid over
the model will be generated using a separate grid generator.
It is known that the data transfer between CAD system and
grid generator is error-prone and a great deal of time is
spent to fix the errors and make the geometric model
suitable for grid generation [1,2]. One remedy suggested in
[1] is to develop unified geometric modeling and grid
generation tools so that both can be done in the same
system. The unified approach will supply grid generators
with CAD tools that are readily available for all geometry
processing, including watertight representation, while
avoiding the error-prone data transfer. Accordingly, people
are developing such unified systems [3, 4, 5, 6] and
developing grid generation tools over them [6, 7, 8]. One
common thing that is being adopted in such systems is the
use of topological representation [9, 10] in order to define
watertight geometric models that are suitable for grid
generation.

While there are standards for topological representation,
such as STEP-42 [10], there are no standards that specify
the following two categories of Application Programming
Interface (API) functions:

1. Geometric API functions, in terms of topological
entities, needed by grid generators

2. Grid generation API functions, again in terms of
topological entities, needed by users to generate
various types of grids – structured, unstructured, and
generalized face and volume grids - over topological
models.

Such standard API functions will help to build standard
grid generation tools/ components, which can be widely
used, instead of rebuilding for various cases of underlying
geometry representation. Development of standard API
functions for grid generation has also been proposed by the
Unstructured Grid Consortium [11]. While the API
functions of this paper are defined over specific data-
structures of a topological representation scheme, those of
[11] are abstract API without specific data-structures.

This paper discusses the two categories of API functions
mentioned above in the context of the topological
representation scheme of Chew et al [4] used in GGTK [6].
GGTK is a Geometry and Grid Toolkit being developed

and maintained at the University of Alabama at
Birmingham. It is developed as a comprehensive software
library consisting of functions for geometric modeling,
topological representation, and grid generation. Figure 1
shows various components and functionalities of GGTK.

The rest of the paper goes as follows: Section 2 briefly
explains the topological representation scheme and gives a
list of API functions needed by grid generators. Section 3

defines grid entities – edge grids, face grids, and volume
grids, and gives API functions for generating various types
of grids by various methods. They include structured and
unstructured grid types and Transfinite Interpolation (TFI),
Delaunay and advancing front methods. Section 4 proposes
an XML schema to specify grids over a part of or whole
model based on the grid generation API functions. Finally
section 5 gives conclusions and future directions.

Figure 1: Components, entities and various functionalities of GGTK

2. TOPOLOGICAL REPRESENTATION
SCHEME

This paper uses the topological representation scheme
given in [4]. The scheme is based on boundary
representation or brep. In a brep format, regions/volumes
of three-dimensional space are described by the faces that
bound them. Faces, in turn, are described by their
underlying surfaces and boundary edges that bound them.
Edges are described by their underlying curves and end
vertices. Finally, vertices are defined by points. Brief
descriptions of user level entities and API functions of the
topological representation scheme are given below.

2.1. Topological Entities
In the scheme, a geometric object is called GeoModel. It is
composed of entities called GeoEntities of dimensions 0, 1,
2, or 3 corresponding to vertices, edges, faces, and
volumes. Each entity has an ID string. Each entity (except a
vertex) is described by its boundaries, which are lower-
dimensional entities. For example, a face shaped like a
square holds the ID strings of four edges surrounding it
(Figure 2). A mapping function embeds an entity from one
dimension into a higher dimension. In the scheme, each
time an entity A is used as a boundary for a higher-
dimensional entity B, there is an accompanying mapping
function to map A into the parametric domain of B. Each
edge of the face in Figure 2, when used as a boundary of
the face, is accompanied by a function from an interval of
R1 to R2 that gives the position of the edge in the
parametric domain of the face. This face, with an

accompanying mapping function from a region of R2 to R3,
can then appear as the boundary of a volume.

The approach described in the previous paragraph is
common to almost all brep formats that have been proposed
in literature including STEP [10]. A distinguishing feature
of the approach in [4] is that three-dimensional positions
are not stored directly with the entities. For example, the
position of an edge in three-dimensional space is not stored
with the edge; instead, the edge’s position is obtained by
composing the mapping function embedding the edge into
the parametric domain of a face (from R1 to R2) with the
mapping function embedding the face into R3. See Figure
2. Similarly, the three-dimensional position of a vertex is
determined by composing three maps - a trivial parametric
map from R0 to R1, a parametric map from R1 to R2, and a
parametric map from R2 to R3.

Figure 2: Representation of a face shaped like a
square

The edge described in the previous paragraph can be
mapped into R3 in more than one way, since there are likely
to be different faces that share that edge as a boundary. It is
required that both mappings are equal up to a tolerance
value [4]. Therefore, each entity of dimensions 0, 1 or 2
also stores a tolerance to indicate how much error (in the 2-
norm) to expect when comparing two different embeddings
of the entity into R3.

Figure 3. Topological entities

Figure 3 shows the main topological entities and mapping
functions. In principle one could allow many classes of
mapping functions, but the only type currently supported in
GGTK is NURBS.

2.2. API Functions
The topology module contains API functions needed by
grid generators. These functions are defined in terms of the
topological entities – GeoModel and GeoEntity, thereby
hiding the geometric details from the grid generators. Some
of the API functions needed by surface grid generators
mentioned in the next section are given below.

GeoModel Functions:

 vector<GeoEntity*> parts(int dimension)

Returns a list of all entities of the given dimension in a
GeoModel.

 int checkWatertight(GeoEntity* volume, vector
<GeoEntity*> wrongEdges)

Checks if a volume is watertight by looking at the edges of
the volume. Note that a model can have more than one
volume. So checking for watertightness is done for
individual volumes.

 int checkFaceLoops(GeoEntity* face)

Checks if the boundary edges of a face form proper loops
in the parametric domain of the face.

GeoEntity Functions:

 int orientationOf(GeoEntity* subentity)

Returns the orientation of subentity with respect to
GeoEntity. This is needed to distinguish "inside" from
"outside" of GeoEntity. Orientation is defined only for
subentities whose dimensions are one less than that of the
GeoEntity.

 int parameterDomain(double &xmin, double &xmax,
double &ymin, double &ymax)

Computes the parameter domain of GeoEntity.

 vector<GeoEntity*> parts(int dimension)

Returns a list of all subparts or super parts of given
dimension of the GeoEntity..

 GPoint coordinates(GeoEntity* subentity, GPoint
coords)

Returns the coordinates in the parameter space of
GeoEntity that correspond to given coords in the parameter
space of subentity.

 double tangentBound(GeoEntity* edge, double a,
double b)

Returns a bound on the tangent angles for a portion of edge.
Parameters a and b are coordinates in the parameter space
of edge. The angles are computed in the parameter space of
GeoEntity. The value returned is the largest angle between
a tangent along the portion of edge and the vector from a to

b in the parameter space of GeoEntity. This can be an upper
bound rather than exact.

 double normalBound(GeoEntity* face, Point3d vector,
double u0, double v0, double radius)

Returns a bound on the normal angles for a portion of a
face. The surface portion desired is that within a sphere of
specified radius about a center in the 3D space of
GeoEntity. Parameters u0, v0 are parametric domain
coordinates of the center. The value returned is the largest
angle between a normal on the portion of surface and the
specified vector. This can be an upper bound rather than
exact.

 Point3d projectPointOnSurface(Point3d P, double u0,
double v0, double &up, double &vp)

Computes the parametric coordinates (up, vp) of the
projection of a given 3D point P on to the surface of a face.
The computation is done starting with given initial
parametric coordinates (u0, v0). The function returns the
point of projection.

3. GRID ENTITIES AND API FOR GRID
GENERATION

Grid entities are GEdgeGrid, GFaceGrid, and
GVolumeGrid. These are defined over GeoEntities of
dimensions 1, 2, and 3 respectively. Face and volume grids
are further classified in to structured, unstructured, and
generalized grids giving rise to the following derived
entities: GStructFaceGrid, GUnstructFaceGrid,
GGeneralizedFaceGrid, GStructVolumeGrid,
GUnstructVolumeGrid, and GGeneralizedVolumeGrid (see
Figure 4). Apart from these, there is also an entity called
GModelGrid that contains all the grids related to a single
topological model. Descriptions of these grid entities and
API for generation are given in the following subsections.

Figure 4. Grid entities and their link to GeoEntity

3.1. Edge Grid
An edge grid is obtained by computing points on the edge
according to specified distribution. The distribution can be
uniform or defined by what are known as packing

functions. The packing can be at either end or both ends or
at some in-between point of an edge. Table 1 shows some
of the commonly used [14] packing functions and their
parameters.

Packing
type

Description Parameters

Epack1L Elliptic packing at start n, ds1

Epack1R Elliptic packing at end n, ds2

Hpack1L Hyperbolic packing at
start

n, ds1

Hpack1R Hyperbolic packing at end n, ds2

Hpack2 Hyperbolic packing at
both start and end

n, ds1, ds2

Hpack3 Hyperbolic packing at in-
between point

n, ratio, ds3

Table 1: Various types of packing functions

The packing parameters n, ds1, ds2, ds3, and ratio
mentioned in Table 1 denote the following:

n: Number of grid points
ds1, ds2, ds3: grid size at starting, end, and in-
between point
ratio: ratio of the distances of the in-between
point from start and end points

API Functions: GGTK provides the following GEdgeGrid
class constructors as API functions for edge grid
generation:

 GEdgeGrid(GeoEntity* edge, int npts)

 GEdgeGrid(GeoEntity* edge, double ds)

 GEdgeGrid(GeoEntity* edge, char* packType, int n,
double ds1, double ds2, double ratio, double ds3)

The first two constructors generate uniform grids specified
by number of points or by grid spacing. The third
constructor generates a grid as per packing parameters.

3.2. Face Grid
This section gives descriptions of grid generation methods
and API functions to generate structured and unstructured
face grids. It is assumed that edge grids have been
generated over all edges of a face before generating the
face grid. The face grid will be consistent with the edge
grids over its boundary edges.

3.2.1. Structured Face Grid
A structured face grid is defined by a rectangular array of
grid points of size ni by nj. It can be generated over a face
under the following conditions:

• The face has no holes

• It has four vertices v0, v1, v2, v3, designated as corner
vertices

• e0, e1, e2, e3 are boundary segments between the
vertices (Figure 5) such that each of them is an edge or
union of two or more edges

• Opposite pairs of segments (e0, e2) and (e1, e3) have
same number of grid points – number of grid points on
e0 and e2 is ni and that on e2 and e3 is nj.

Figure 5. Four boundary segments for a
structured face grid

API functions: GGTK has the following two constructors
for structured grid generation. In both of them, the grid is
generated by transfinite interpolation in the parametric
domain.

 GStructFaceGrid (GeoEntity* face, GModelGrid*
modelgrid)

This constructor assumes that the face has exactly four
edges e0, e1, e2, and e3 forming a loop in that order and
that opposite pairs (e0, e2) and (e1, e3) have same number
of grid points.

 GStructFaceGrid(GeoEntity* face, GModelGrid*
modelGrid, GeoEntity *v0, GeoEntity *v1, GeoEntity
*v2, GeoEntity *v3)

This constructor is for a face with four or more edges. v0,
v1, v2, v3 are corner vertices satisfying the conditions
mentioned in the definition of a structured face grid.

3.2.2. Unstructured Face Grid
An unstructured face grid is a discretization of a face into
triangles. The unstructured face grid class,
GUnstructFaceGrid contains the following:

• Number of grid points, number of triangles

• Array of grid points storing their 3D coordinates and
2d parametric values

• For each triangle, three indices in the grid points array
indicating the three vertices of the triangle.

Unstructured face grids can be generated by any surface
grid generation method. The most common methods of
surface grid generation are the advancing front method and
Delaunay triangulation. These can be computed either in

the parametric domain or directly in the physical (3D)
space. It is to be noted that, in most of the cases, grids
computed in the parametric domain will not be of good
quality and can be used only for display purposes. Quality
grids can be obtained if computed directly in 3D space.

API functions: Two API functions for unstructured face
grid generation corresponding to two different methods are
given below. The first one does the computation in
parametric domain and the other one does it in 3D.

 GUnstructFaceGrid*
delaunayInParametricDomain(GeoEntity* face,
double size, GModelGrid* modelgrid)

This function computes an unstructured face grid by first
computing a 2d unstructured grid in the parametric domain
and then mapping it on to the surface in 3D. It preserves the
edge grid points in the boundary of the face. The 2D grid is
obtained using Shewchuk’s triangle routine [15], which
computes a Delaunay triangulation. While the triangle
routine takes many parameters to control the triangulation,
this routine passes only the maximum area bound
parameter specified by the input parameter, “size”.

 GUnstructFaceGrid*
advancingFrontMethodOverParametricSurface(
GeoEntity* face, GModelGrid* modelgrid, int
maxNumTriangles)

This function computes an unstructured face grid by
advancing front method directly in 3D, which is similar to
the one given in [16]. New points are computed in physical
space in order to ensure quality triangles. The new points
are projected onto the underlying surface so that all the grid
points lie on the surface.

• Background grid: Advancing front method uses what
is known as background grid to obtain required
triangle sizes in the interior of the surface. In this
routine, a background grid is computed internally over
the parametric domain using initial boundary grid
points. Required triangle sizes at these grid points are
estimated from the average boundary edge grid sizes
at these points.

• Maximum number of triangles: This is used as one of
the terminating conditions in advancing front method.
This is specified by the input parameter
“maxNumTriangles”.

Delaunay surface mesh component: Using the API
functions listed in Section 2.2, Chew [8, 12] has developed
a surface mesh component on top of GGTK. It takes a
geometric model file in XML and generates surface grid for
the whole model. Grid size and shape requirement are
provided by the following input parameters:

• maxRatio: This is an upper bound for the ratio of
triangle circumcircle radius over shortest edge. The
smallest accepted value is 1 which implies an angle-
bound of 30 degrees. Larger numbers allow smaller
angles to appear in the resulting mesh.

• maxDisplacement: The displacement of a triangle is a
rough measure of how closely the triangle matches the

curvature of the local surface. It is the distance
between the actual surface and the plane of the
triangle.

• maxSize: This is an upper bound for the length of an
element's longest edge.

Remark: The above-mentioned Delaunay mesh component
has been developed outside GGTK. It uses only the
topological entities and API functions of GGTK. It does not
use the grid entities. Hence, instead of an API function, the
current interface is through files. One provides a model file
and gets back a mesh file in a specific file format.

3.3. Volume Grid

3.3.1. Structured Volume Grid
A structured volume grid is defined by a three dimensional
array of points defined over a volume. ni, nj, nk denote the
number of points in three directions and v000, v100, v110,
v010, v001, v101, v111, v011 denote the eight corner
vertices of the volume.

API Functions:

 GStructVolumeGrid(GeoEntity* vol, GModelGrid*
modelgrid, GeoEntity* v000, GeoEntity* v100,
GeoEntity* v110, GeoEntity* v010, GeoEntity* v001,
GeoEntity* v101, GeoEntity* v111, GeoEntity* v011)

 GStructVolumeGrid(GeoEntity* vol, GModelGrid*
modelgrid, vector<GStructFaceGrid*> facegrids)

The above two routines generate structured volume grids
over a given volume, provided the volume is bounded by
six faces having structured face grids defined over them
and the face grids have compatible number of points along
i, j, k directions. The structured volume grid is obtained by
3D transfinite interpolation.

For the first routine, the corner vertices are passed as input
parameters in a specific order. The routine will search the
modelgrid and obtain the six face grids. For the second
routine, the six face grids are passed in an input vector
containing the face grids in the following order: i-min, i-
max, j-min, j-max, k-min, k-max.

3.3.2. Unstructured Volume Grid
Unstructured volume grid over a topological volume is
defined by a collection of grid points and grid elements,
which are tetrahedrons. The two most popular methods for
unstructured volume grid generation are the advancing
front and Delaunay triangulation. Usually, the input to a
tetrahedral volume grid generator is a surface grid defined
over the boundary faces of the volume and some
parameters to indicate required size and shape of grid
elements. Some grid generators, such as the advancing
front method in [17], will generate volume grids that
conform to input surface grids and will not require interface
to the geometric models. Others, such as the Delaunay
meshing in [18], may not conform to input surface grids

and may need interface to insert additional points on the
surface to ensure high quality meshes.

API Function: Currently GGTK has the following API
constructor for unstructured volume grid generation.

 GUnstructVolumeGrid(GUnstructFaceGrid*
surfaceGrid)

This constructor takes an unstructured surface grid as input
and generates an unstructured volume grid by advancing
front method that conforms to the input grid. The input
surface grid is required to be watertight and oriented.

3.4. Model Grid
A model grid contains all the grids related to a single
topological model. Specifically, it has lists of edge, face,
and volume grids.

GModelGrid Functions: GGTK provides the following
API functions to generate grids over a whole model using
the GEdgeGrid and GFaceGrid API functions/ constructors
defined previously.

 createAllEdgeGrids(int npts)

Creates all edge grids with uniform packing for given
number of points.

 createAllEdgeGrids(double ds)

Creates all edge grids with uniform packing for given grid
spacing.

 createAllStructuredFaceGrids()

Creates all structured face grids, assuming that all faces are
four sided and the edge grids satisfy the requirements of
structured face grids.

 createAllFaceGrids(double size)

Creates all unstructured face grids by Delaunay
triangulation in parametric domains.

 createAllFaceGridsbyAFM()

Creates all unstructured face grids by advancing front
method.

These functions generate grids using a few globally applied
input parameters. If one wants to control the grid over
individual edges or faces, then one can use the grid
specification scheme given in the following section.

4. GRID SPECIFICATION

This section explains a scheme to specify required grids
over some or all parts of a model and mentions how this
scheme can be used to develop web components for grid
generation.

4.1. XML Scheme
The scheme is defined in XML (Extensible Markup
Language). The actual schema file (gridSpec.xsd) is given

in the Appendix. The main elements of the schema are
GridSpecification, edgeGridSpec, faceGridSpec, and
volumeGridSpec. Explanations of these elements and their
attributes are given below.

GridSpecification element: It consists of a sequence of
elements edgeGridSpec, faceGridSpec, and
volumeGridSpec. It has two attributes GridSpecId and
ModelId. The GridSpecId attribute stores a unique name
for the grid specification. The ModelId attribute stores the
name of the geometric model over which the grid is to be
generated.

EdgeGridSpec element: It is used to specify an edge grid.
Its attributes are edge name, edge grid packing type, and
packing parameters n, ds1, ds2, ds3, and ratio as defined in
Section 3.1.

FaceGridSpec element: It is used to specify a face grid. Its
attributes are face name, face grid type, face grid method,
and required face grid parameters as defined in Section 3.2.

VolumeGridSpec element: It is used to specify a volume
grid. Its attributes are volume name, volume grid type,
volume grid method, and required volume grid parameters
as defined in Section 3.3.

4.2. Scheme Example
Figure 6 shows grid over a single element injector (SEI)
model specified by the above XML scheme. The model has
42 vertices, 70 edges, and 34 faces. Given below is a
sample specification over four edges and three faces of the
model. Note that structured and unstructured grids are
specified over different parts of the same model.

Figure 6: Grids over various faces of SEI

Sample grid specification:

<?xml version = "1.0" ?>
<GridSpecification
 GridSpecID = "SEI_GridSpec"
 ModelID = "SingleElementInjector"
<edgeGridSpec edgeName = "ED0"
 packType = "UPACK" npts = "20"/>
<edgeGridSpec edgeName = "ED1"
 packType = "UPACK" npts = "20"/>
<edgeGridSpec edgeName = "ED2"
 packType = "UPACK" ds = "0.001"/>
<edgeGridSpec edgeName = "ED3"
 packType = "UPACK" npts = "20"/>
<faceGridSpec faceName = "NozzleFace_0"
 gridType = "Unstructured"
 method = "3D_Surf_AdvancingFront"
 maxNTriangles = "10000"/>
<faceGridSpec faceName = "NozzleFace_1"
 gridType = "Structured"
 method = "2D_TFI"/>
<faceGridSpec faceName = "NozzleFace_2"
 gridType = "Unstructured"
 method = "3D_Surf_AdvancingFront"
 maxNTriangles = "10000"/>
</GridSpecification>

4.3. Web component for grid generation
Using the above XML scheme for grid specification, one
can develop a web component for grid generation that takes
in a model file and a grid specification file, and returns a
grid file in a specific file format. The component can be
used by remote users to obtain required grids

The following things are needed to develop such a web
component:

1. Model generator in GGTK format: It can either
provide mechanisms to create models in GGTK
format or it can provide tools to convert models in
IGES or STEP format generated using other CAD
systems.

GGTK has many API functions for model creation [5,
6] and currently STEP to GGTK converter functions
are being developed. A MiniCAD system is also being
developed, which is based on GGTK and provides
Graphical User Interface (GUI) for model creation,
editing and grid generation.

2. Grid generator that supports the grid API functions:
GGTK already has the API functions mentioned in
Section 3. The grid generator can use these functions
or can have its own functions like Delaunay surface
mesher of Chew mentioned in Section 3.2.2.

3. Web interface: This is to provide an interface to
remote users through the Internet. Since the grid
generation component needs only the transfer of files
– model file, grid specification file, and grid file, the
interface can be easily created using web tools like
OSOAP [19].

5. CONCLUSIONS AND FUTURE
DIRECTIONS

The paper has shown a framework of geometric and grid
API functions that can be provided in an integrated
CAD/Grid system using topological representation to
define geometric models. It can be used to develop standard
grid generation tools/ components to generate structured/
unstructured face/ volume grids over topological models by
TFI/ Delaunay/ advancing front methods.

The framework has been presented in terms of the
topological scheme used in GGTK, which currently
supports curves and surfaces defined by NURBS. The
topological scheme is being extended to include other kinds
of surfaces such as faceted and subdivision surfaces. Then
the framework will be extended to provide grid generation
tools for models defined by those kinds of surfaces. It also
can be extended to include generalized grids and other grid
generation methods.

The current grid generation API assumes that there is a one
to one correspondence between topological entities and
grid entities. An extension is being investigated to create
grid entities that can exist within or span topological
entities of the same or higher dimension. For example,
currently a grid edge exists on a complete topological edge.
The extension would allow a grid edge to exist as part of an
edge or span edges or exist in a face, several faces, or in a
volume. The data structure of the extended grid entities
would maintain its own boundary representation. Using the
underlying topological model it will be possible to create a
watertight grid model because of the grid's topological
structure and the fact that the topological model provides a
unique solution for any position on the model. One may
have to address continuity problems that may exist where
grid edges, faces, and volumes cross topological-
boundaries of the model.

ACKNOWLEDGEMENTS

This research is supported in part by NASA URETI
Program and NSF ITR Adaptive Software Project. The
authors would like to thank Dr. Paul Chew of Cornell
University for specifying the topological API functions
needed for his surface grid generator and for fruitful
discussions on developing the APIs. They thank Yasushi
Ito for providing unstructured volume grid generation tool
in GGTK.

APPENDIX

XML Schema for Grid Specification
<schema xmlns="http://www.w3.org/2001/XMLSchema"

<annotation> <documentation xml:lang="en">
 Grid specification for a geometric model defined in
terms of the topological representation scheme of the
Cornell-UAB-MSU Adaptive Software Project.

 </documentation>
</annotation>

<element name="GridSpecification"
 type="CU_UAB_ASP:GridSpecificationType">
</element>

<complexType name="GridSpecificationType">
 <sequence minOccurs="0" maxOccurs="unbounded">
 <choice>
 <element name = "edgeGridSpec"
 type = "CU_UAB_ASP:EdgeGridSpecType"/>
 <element name = "faceGridSpec"
 type = "CU_UAB_ASP:FaceGridSpecType"/>
 <element name = "volumeGridSpec"
 type = "CU_UAB_ASP:VolumeGridSpecType"/>
 </choice>
 </sequence>
 <attribute name = "GridSpecID" type = "NMTOKEN" use
= "required"/>
 <attribute name = "ModelID" type = "NMTOKEN" use =
"required"/>
</complexType>

<complexType name = "EdgeGridSpecType">
 <attribute name = "edgeName" type = "string" use =
"required"/>
 <attribute name = "packType" type =
"CU_UAB_ASP:EdgeGridPackType" use = "required"/>
 <attribute name = "npts" type = "positiveInteger" use=
"optional"/>
 <attribute name = "ds" type = "double" use="optional"/>
 <attribute name = "ds1" type = "double" use="optional"/>
 <attribute name = "ds2" type="double" use="optional"/>
 <attribute name = "ratio" type="double" use="optional"/>
 <attribute name = "ds3" type = "double" use="optional"/>
</complexType>

<simpleType name = "EdgeGridPackType">
 <restriction base = "string">
 <enumeration value = "UPACK"/>
 <enumeration value = "EPACK1"/>
 <enumeration value = "EPACK2"/>
 <enumeration value = "HPACK1"/>
 <enumeration value = "HPACK2"/>
 <enumeration value = "HPACK3"/>
 </restriction>
</simpleType>

<complexType name = "FaceGridSpecType">
 <attribute name = "faceName" type = "string" use =
"required"/>
 <attribute name = "gridType" type =
"CU_UAB_ASP:FaceGridType" use = "required"/>
 <attribute name = "method" type =
"CU_UAB_ASP:FaceGridMethodType"
 use = "required"/>
 <attribute name = "maxSize" type = "double" use =
"optional"/>
 <attribute name = "maxNTriangles" type = "integer" use =
"optional"/>
</complexType>

<simpleType name = "FaceGridType">
 <restriction base = "string">
 <enumeration value = "Structured"/>
 <enumeration value = "Unstructured"/>
 </restriction>
</simpleType>
<simpleType name = "FaceGridMethodType">
 <restriction base = "string">
 <enumeration value = "2D_TFI"/>
 <enumeration value = "2D_using_CMU_triangle"/>
 <enumeration value = "3D_Surf_AdvancingFront"/>
 <enumeration value = "3D_Surf_Delaunay"/>
 </restriction>
</simpleType>

<complexType name = "VolumeGridSpecType">
 <sequence minOccurs="0" maxOccurs="1">
 <choice>
 <element name = "eightVertices"
 type = "CU_UAB_ASP:EightStringsType"/>
 <element name = "sixFaces"
 type = "CU_UAB_ASP:SixStringsType"/>
 </choice>
 </sequence>
 <attribute name = "volumeName" type = "string" use =
"required"/>
 <attribute name = "gridType" type =
"CU_UAB_ASP:VolumeGridType" use = "required"/>
 <attribute name = "method" type =
"CU_UAB_ASP:VolumeGridMethodType"
 use = "required"/>
</complexType>

<simpleType name = "VolumeGridType">
 <restriction base = "string">
 <enumeration value = "Structured"/>
 <enumeration value = "Unstructured"/>
 </restriction>
</simpleType>
<simpleType name = "VolumeGridMethodType">
 <restriction base = "string">
 <enumeration value = "TFI"/>
 <enumeration value = "AdvancingFront"/>
 <enumeration value = "Delaunay"/>
 </restriction>
</simpleType>

<simpleType name = "stringList">
 <list itemType = "string"/>
</simpleType>
<simpleType name = "EightStringsType">
 <restriction base = "CU_UAB_ASP:stringList">
 <length value = "8"/>
 </restriction>
</simpleType>
<simpleType name = "SixStringsType">
 <restriction base = "CU_UAB_ASP:stringList">
 <length value = "6"/>
 </restriction>
</simpleType>
</schema>

REFERENCES

[1] Rida T. Farouki, “Closing the Gap Between CAD
Model and Downstream Application”, SIAM News
Online, http://www.siam.org/siamnews/06-
99/cadmodel.htm, Vol. 32, 1999.

[2] Y. Zheng, N. P. Weatherill, O. Hassan, “Topology
abstraction of surface models for three-dimensional
grid generation”, Engineering with Computers, vol.
17, 28-38, 2001.

[3] R. Haimes and G.J.Follen, “Computational Analysis
Programming Interface”, Proceedings of the 6th
International Conference on Numerical Grid
Generation in Computational Field Simulations. July,
1998.

[4] L. Paul Chew, Stephen Vavasis, S. Gopalsamy, TzuYi
Yu, Bharat Soni, “A Concise Representation of
Geometry Suitable for Mesh Generation”,
Proceedings of 11th International Meshing
Roundtable, Ithaca, September 2002.

[5] S. Gopalsamy, TzuYi Yu, “A Geometry Engine for
CAD/Grid Integration”, AIAA 2003-800, 41st
Aerospace Sciences Meeting & Exhibit, January 2003,
Reno, Nevada.

[6] Geometry and Grid Toolkit (GGTK) documentation,
http://www.eng.uab.edu/me/ETLab/Software/GGTK/
manual/index.html

[7] M. J. Aftosmis, M. Delanaye, R. Haimes, “Automatic
Generation of CFD-Ready Surface Triangulations
from CAD Geometry”, AIAA Paper 99-0776, January
1999.

[8] L. P. Chew, P. Stodghill, "Interface for the surface
mesher", Project communication, ITR-ASP Project,
Cornell University, 2003.
http://www.asp.cornell.edu/project.

[9] K.J.Weiler, "Topological Structures for Geometric
Modeling", Ph.D. Thesis, Rensselaer Polytechnic
Institute, 1986.

[10] STEP: International Standard ISO 10303-42.
Industrial automation systems and integration -
Product data representation and exchange - Part 42:
Integrated generic resource: Geometric and
topological representation, 2000.

[11] “Unstructured Grid Consortium – Programmers
Reference”, UGC standards document, Version 1.0,
2002, http://www.pointwise.com/ugc/

[12] L. P. Chew, “Guaranteed-quality mesh generation for
curved surfaces.” Proceedings of the ninth symposium
on computational geometry, pp. 274–280. ACM Press,
1993.

[13] L. P. Chew, "API functions needed for Delaunay
surface grid generation over a topological model",
Project communication, ITR-ASP Project, Cornell
University, 2002.

[14] J. F. Thompson, B. K. Soni, N. P. Weatherill (Eds),
“Handbook of Grid Generation”, CRC Press, 1999.

[15] J. R. Shewchuk, “Triangle – A two dimensional
quality mesh generator and Delaunay triangulator”,
http://www-2.cs.cmu.edu/~quake/triangle.html.

[16] J. R. Tristano, S. J. Owen, S. A. Canann, “Advancing
front surface mesh generation in parametric space
using a Riemannian surface definition”, Proceedings
of 7th International Meshing Roundtable, Dearborn,
Michigan, 1998.

[17] J. B. Cavalcante Neto, P. A. Wawrzynek, M. T. M.
Carvalho, L. F. Martha, A. R. Ingraffea, “An
algorithm for three-dimensional mesh generation for
arbitrary regions with cracks”, Engineering with
Computers, vol. 17, 75-91, 2001.

[18] P. L. Chew, “Guaranteed-Quality Delaunay Meshing
in 3D”, Proceedings of the 13th ACM Symposium on
Computational Geometry, pp. 391–393, ACM Press,
1997.

[19] P. Stodghill, “O’Caml Tools for Exposing Legacy
Applications as Web Services”, the file “osoap-
0.9.3.tar.gz” at www.asp.cornell.edu/osoap/sources/.

